Drug Discovery with SELEX Systematic Evolution of Ligands by Exponential Enrichment

invi

Gao

Oligonucleotides—RNA or DNA

Trillions of possibilities, most never seen...

Nucleotides (n)	Number of possible sequences (4 <i>n</i>)
5	1,024
10	1,048,576
15	1,073,741,824
20	1,099,511,627,776
25	1,125,899,906,842,624
40	1,208,925,819,614,629,174,706,176

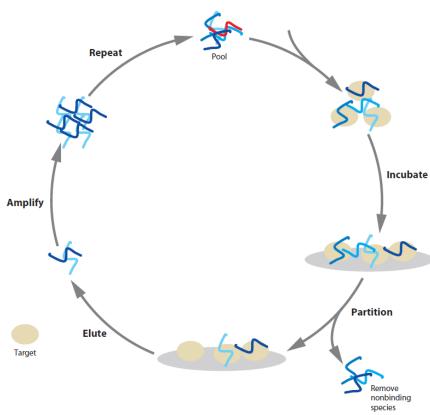
Could a few of these be very special?

Aptamers—Chemical Antibodies

- Specific DNA or RNA sequences
 - Synthetic, unnatural, 30-40 random nucleotides
- Specific sequence λ 3D structure λ tight binding to target, e.g.
 - Toxins, virus-infected cells, cancer cells, etc.
- Disrupt protein interactions λ treat disease
- Aptamers are very rare
 How can we identify & make

Don't Analyze, Just Look

SELEX—Screening Made Possible


Aptamers are hard to see but easy to screen:

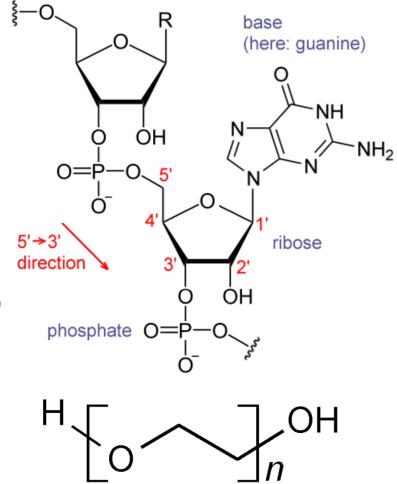
lssue	Macroscopic (Legos)	Biochemical (A,T,C,G)
Time	Slow, time-	Fast—we can use the
	consuming to build	most efficient builders
		(RNA pol., DNA pol.)
Money &	\$\$\$ Expensive,	Free! And abundant (A,
Resources	wasteful	T, C, G)
Space	Big—need space for	Small—trillions in a
	storage	test tube
	λ Not possible	λ SELEX!

The SELEX Cycle (1990)

- Synthesize random RNA library (1012 to 1015 aptamers)
- Incubate with target m protein *in vitro*
- 3. Wash away unbound RNAs
- 4. Collect bound RNAs
- 5. Amplify (PCR, etc.)

A Video Animation from JoVE: http://www.jove.com/index/Details.stp?ID

Aptamers as Drugs


- Goal: Long-term, chronic administration as a treatment for disease
- Disrupt crucial protein interactions
- Toxicity: generally non-toxic, nonimmunogenic
- Concerns to be assessed:
 - Nonspecific off-target protein interactions
 - Anticoagulation

Aptamers as Drugs—Concerns

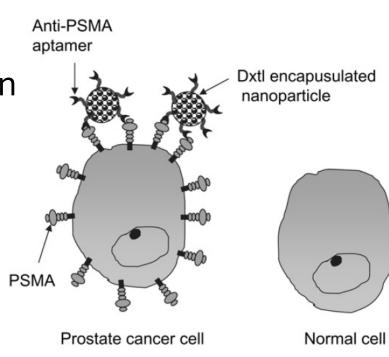
- I. They are degraded
 - Metabolic instability, degradation by nucleases
- 2. They flush out of the body
 - Rapid elimination of non-protein-bound oligonucleotides through urine
- 3. They don't stay where you want them to
 - Rapid distribution from the plasma & interstitial fluid into the tissues

Improving the Aptamers

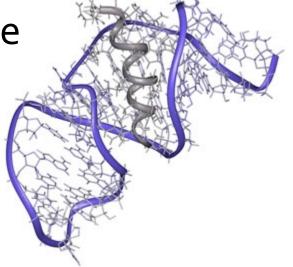
- Chemical modifications
 —better retention in body
 - 2' —OCH3 or 2' —F to increase stability (use mutated RNA polymerase)
 - PEG linkage for (passes through kidneys slower)
 - Other-site specific modifications

Aptamers as Drugs—Macugen®

- Treats neovascular agerelated macular degeneration (AMD)
 - Binds to vascular endothelial growth factor (VEGF) 165
- By injection only (into eye)
- Only currently marketed aptamer drug (2004)


CUANTO MÁS TARDE VEA LA DMAE ANTES VERÁ LA CEGUERA

ESPECIALMENTE EFICAZ EN LAS FASES TEMPRANAS DE LA DMAE NEOVASCULAR «2


Variations and Applications

- Cell-SELEX—aptamers screened with whole cells
 - Identify differences between cancer and non-cancer cells (e.g. membrane receptors)
 - Affinity vs. selectivity
- Templates for rational drug design
- Diagnostic and biosensing potential (e.g. imaging)

Conclusion

- Promising as a class of drugs; much more development in the future (Bouchard et al. 2010)
 - Next-generation aptamers
- More clinical familiarity with aptamers needed

The SELEX process is a great idea that takes advantage of biochemical properties and tools

Literature Referenced

- Barbas AS, White RR. The development and testing of aptamers for cancer. *Curr Opin Investig Drugs* 2009; **10**:572-578.
- Bouchard PR, Hutabarat RM, Thompson KM.
 Discovery and development of therapeutic aptamers. *Annu Rev Pharmacol Toxicol.* 2010; 50:237–257.
- Khati M. The future of aptamers in medicine. J Clin Pathol 2010; 63: 480-487.
- Na EW Chima DT Caliac D Cuppingham ET

Photo Credits

Photo of dsDNA:

http://voices.washingtonpost.com/blog-post/101

- Front slide aptamer: <u>http://aptamer.icmb.utexas.edu/images/aptamer</u>
- Front slide aptamer 2: <u>http://www.biochemistry.ucla.edu/biochem/Facu</u>
- RNA structure: <u>http://upload.wikimedia.org/wikipedia/commons</u>
- Sand sifting through hand: